Sign Language Recognition

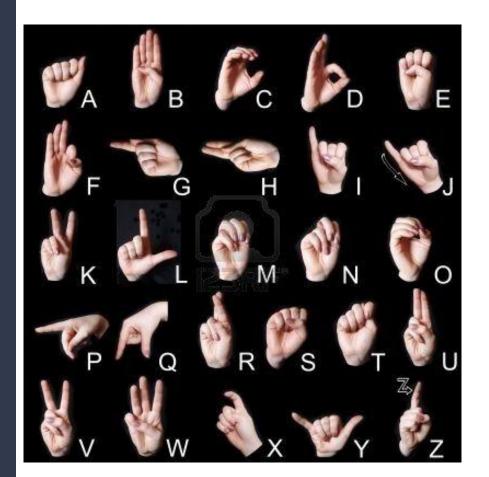
CS 7641 Group 3

Jenna Gottschalk Hechen Li Ahmed Rabbani Ahindrila Saha Sai Yang

Problem Definition

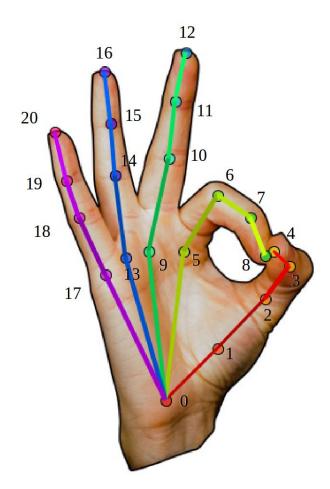
Motivation

- According to the WHO, 5% of the world population suffers from some extent of speech - hearing impairment.
- We intend to use Sign language recognition, powered by machine learning translation to bridge the communication gap between the hearing and hearing impaired community.

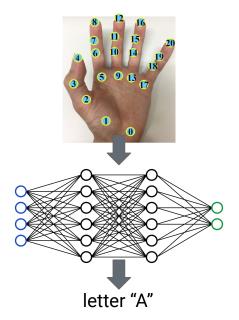

Literature Review

- In the past PCA, Kurtosis position [1] and skeleton[4] have been used for feature extraction paired with CNN[3], Hidden Markov Chain[1] and SVM[2] for classification.
- Our approach requires only image input, supported by feature extraction from OpenPose framework and classification using CNN.

Data Overview

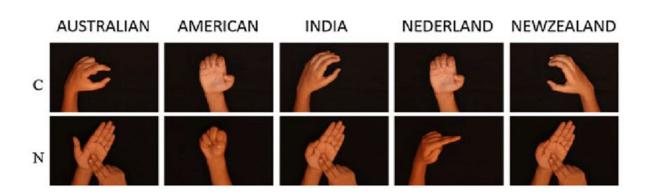

Images of American Sign Language will be used in our analysis. Images will be filtered for only 24 classes of English alphabets (A-Z) excluding J and Z due to rotation

Dataset	Number of features
Kaggle ASL Dataset	87,000 images of dimension 200*200 with 29 classes
ASL alphabet test dataset	870 images, 30 for each 29 class


Data Preprocessing

- Feature extraction
 OpenPose will extract 21 key points
 on hand for every image output.
- Dimensionality reduction
 PCA will be used to extract the most important inputs as a combination of 21 features.

Supervised Machine Learning


- Input: (x,y) coordinates of the 21 key points
- Output: predicted meaning of the gesture
- Try models with different
 - Network Types: Deep Neural
 Network, CNN, Transformer
 - Network Structure: different numberof node & layers
- Train and find the best parameters for each model, compare the results
- If time permits, develop a demo application to recognize signs from webcam in real time

	512 nodes	1024 nodes	
DNN			
CNN			

Unsupervised Machine Learning

- Objective: Compare gestures across different sign languages
- Input: (x,y) coordinates of the 21 key points
- Output: groups of similar sign language gestures
- Clustering: K-means, DBSCAN

Potential Result

- Classification model for American Sign Language with high detection accuracy
- Clustering model to identify similar characteristics of hand gestures across different countries

Optional: Application to translate hand gestures from a video in real-time

Project Timeline

						2022			
	Resource						Febuary	March	April
	Working Hours					· county			
Project Events	AS	AR	HL	JG	SY	Total Hours			
Literature Review & Project Proposal	2.2	2.2	2.2	2.2	2.2	11		22 22 22 22	72 72 72 73
Data Pre Processing	2.2	2.2	2.2	2.2	2.2	11			0, 0, 0, 0
Feature Extraction	4.4	4.4	4.4	4.4	4.4	22			- 8 - 2 - 2 - 2
Modelling (Supervised & Unsupervied)	8.8	8.8	8.8	8.8	8.8	44	0 0 0 0	0 0	100 00 0
Midpoint Report	1.1	1.1	1.1	1.1	1.1	5.5			
Model Evaluation	2.2	2.2	2.2	2.2	2.2	11	12 12 12 E	- 20 - 20 - 21	
Final Report	1.1	1.1	1.1	1.1	1.1	5.5	0 0 0	39 39 39 3	
72		*			*	110.0	P	(a) (b) (b) (d)	

Key	Team Member
AS	Ahindrila Saha
AR	Ahmed Rabbani
HL	Hechen Li
JG	Jenna L Gottschalk
SY	Sai Yang